An evaluation framework for cross-lingual link discovery

نویسندگان

  • Ling-Xiang Tang
  • Shlomo Geva
  • Andrew Trotman
  • Yue Xu
  • Kelly Y. Itakura
چکیده

Cross-Lingual Link Discovery (CLLD) is a new problem in Information Retrieval. The aim is to automatically identify meaningful and relevant hypertext links between documents in different languages. This is particularly helpful in knowledge discovery if a multi-lingual knowledge base is sparse in one language or another, or the topical coverage in each language is different; such is the case with the Wikipedia. Techniques for identifying new and topically relevant cross-lingual links are a current topic of interest at NTCIR where the CrossLink task has been running since the 2011 NTCIR-9. This paper presents the evaluation framework for benchmarking algorithms for cross-lingual link discovery evaluated in the context of NTCIR-9. This framework includes topics, document collections, assessments, metrics, and a toolkit for pooling, assessment, and evaluation. The assessments are further divided into two separate sets: manual assessments performed by human assessors; and automatic assessments based on links extracted from the Wikipedia itself. Using this framework we show that manual assessment is more robust than automatic assessment in the context of cross-lingual link discovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overview of the NTCIR-9 Crosslink Task: Cross-lingual Link Discovery

This paper presents an overview of NTCIR-9 Cross-lingual Link Discovery (Crosslink) task. The overview includes: the motivation of cross-lingual link discovery; the Crosslink task definition; the run submission specification; the assessment and evaluation framework; the evaluation metrics; and the evaluation results of submitted runs. Cross-lingual link discovery (CLLD) is a way of automaticall...

متن کامل

The Effectiveness of Cross-lingual Link Discovery

This paper describes the evaluation in benchmarking the effectiveness of cross-lingual link discovery (CLLD). Cross-lingual link discovery is a way of automatically finding prospective links between documents in different languages, which is particularly helpful for knowledge discovery of different language domains. A CLLD evaluation framework is proposed for system performance benchmarking. Th...

متن کامل

Multi-filtering Method Based Cross-lingual Link Discovery

This paper describes cross-lingual link discovery method of ISTIC used in the system evaluation task at NTCIR-9. In this year's evaluation, we participated in cross-lingual link discovery task from English to Chinese. In this paper, we mainly describe our understanding for CLLD, the key techniques of our system, and the evaluation results.

متن کامل

Overview of the NTCIR-10 Cross-Lingual Link Discovery Task

This paper presents an overview of NTCIR-10 Cross-lingual Link Discovery (CrossLink-2) task. For the task, we continued using the evaluation framework developed for the NTCIR-9 CrossLink-1 task. Overall, recommended links were evaluated at two levels (file-to-file and anchor-to-file); and system performance was evaluated with metrics: LMAP, R-Prec and P@N.

متن کامل

Automated Cross-lingual Link Discovery in Wikipedia

At NTCIR-9, we participated in the cross-lingual link discovery (Crosslink) task. In this paper we describe our approaches to discovering Chinese, Japanese, and Korean (CJK) cross-lingual links for English documents in Wikipedia. Our experimental results show that a link mining approach that mines the existing link structure for anchor probabilities and relies on the “translation” using cross-l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Manage.

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2014